Benzene is a very important molecule in a variety of industrial, environmental, and chemical systems. In combustion, benzene plays an essential role in the formation and growth of polycyclic aromatic hydrocarbons and soot. In this work, a new laser-based diagnostic is presented to make quantitative, interference-free, and sensitive measurements of benzene in the mid-infrared (MIR) region. The diagnostic is based on a widely tunable difference-frequency-generation (DFG) laser system. We developed this laser source to emit in the MIR between 666.54 cm-1 and 790.76 cm-1 as a result of the DFG process between an external-cavity quantum-cascade-laser and a CO2 gas laser in a nonlinear, orientation-patterned GaAs crystal. Benzene measurements wer...