Data-driven damage localization is an important step of vibration-based structural health monitoring. Statistical pattern recognition based on the prominent steps of feature extraction and statistical decision-making provides an effective and efficient framework for structural health monitoring. However, these steps may become time-consuming or complex when there are large volumes of vibration measurements acquired by dense sensor networks. To deal with this issue, this study proposes fast unsupervised learning methods for feature extraction through autoregressive modeling and damage localization through a new distance measure called Kullback–Leibler divergence with empirical probability measure. The feature extraction approach consists of ...