Echo State Networks (ESNs) are widely-used Recurrent Neural Networks. They are dynamical systems including, in state-space form, a nonlinear state equation and a linear output transformation. The common procedure to train ESNs is to randomly select the parameters of the state equation, and then to estimate those of the output equation via a standard least squares problem. Such a procedure is repeated for different instances of the random parameters characterizing the state equation, until satisfactory results are achieved. However, this trial-and-error procedure is not systematic and does not provide any guarantee about the optimality of the identification results. To solve this problem, we propose to complement the identification procedure...