Specific numerical methods for the computational analysis of damage induced in rail by repeated rolling are presented. The calculations of mechanical stabilized states (shakedown, ratchetting) of rail-like structures subjected to moving contact loads are performed using the “stationary methods”. An association of 2-D finite element method, Fourier expansion in the longitudinal direction of the rail and steady-state assumption reduces the computational cost of such procedures. These methods constitute the key for the quantitative prediction of fatigue. Three types of damage (low-, high-cycle fatigue and damage) are encountered. Special attention to high-cycle fatigue is paid, through the use of Dang Van multi-axial fatigue criterion. The 3-D...