International audienceWe consider two exit problems for the Korteweg-de Vries equation perturbed by an additive white in time and colored in space noise of amplitude a. The initial datum gives rise to a soliton when a=0. It has been proved recently that the solution remains in a neighborhood of a randomly modulated soliton for times at least of the order of a^{−2}. We prove exponential upper and lower bounds for the small noise limit of the probability that the exit time from a neighborhood of this randomly modulated soliton is less than T, of the same order in a and T. We obtain that the time scale is exactly the right one. We also study the similar probability for the exit from a neighborhood of the deterministic soliton solution. We are ...