International audienceThe complexes formed by alkali metal cations (Cat(+)) and glycine (Gly) were studied by means of ab initio quantum chemical methods. Seven types of Gly-Cat(+) interaction were considered in each case. It was found that in the most stable forms of Gly-Li+ and Gly-Na+ the metal ion is chelated between the carbonyl oxygen and nitrogen ends of glycine. For Gly-K+ an isomer involving complexation with both oxygens of the carboxylic function is found to be degenerate with the above chelate, and becomes slightly more stable for Gly-Rb+ and Gly-Cs+. In all cases, interaction of the ion with the carboxylate group of zwitterionic glycine is also low in energy. Computed binding energies (Delta H-298, kcal mol(-1)) are 54.5 (Gly-L...