Let the quantization of the linear flow of diophantine frequencies $\om$ over the torus $\T^l$, $l>1$, namely the Schrödinger operator $-i\hbar\omega\cdot\nabla$ on $L^2(\T^l)$, be perturbed by the quantization of a function $\V_\om: \R^l\times\T^l\to\R$ of the form \vskip 5pt\noindent $$ \V_\om(\xi,x)=\V(z\circ \L_\om(\xi),x),\quad \L_\om(\xi):= \om_1\xi_1+\ldots+\om_l\xi_l $$ \vskip 4pt\noindent where $z\mapsto \V(z,x): \R\times\T^l \to\R$ is real-holomorphic. We prove that the corresponding quantum normal form converges uniformly with respect to $\hbar\in [0,1]$. Since the quantum normal form reduces to the classical one for $\hbar=0$, this result simultaneously yields an exact quantization formula for the quantum spectrum, as well as a ...