28 pages, 2 figuresInternational audienceWe study the evolution of the heat and of a free quantum particle (described by the Schrödinger equation) on two-dimensional manifolds endowed with the degenerate Riemannian metric $ds^2=dx^2+|x|^{-2\alpha}d\theta^2$, where $x\in \mathbb{R}$, $\theta\in\mathbb{T}$ and the parameter $\alpha\in\mathbb{R}$. For $\alpha\le-1$ this metric describes cone-like manifolds (for $\alpha=-1$ it is a flat cone). For $\alpha=0$ it is a cylinder. For $\alpha\ge 1$ it is a Grushin-like metric. We show that the Laplace-Beltrami operator $\Delta$ is essentially self-adjoint if and only if $\alpha\notin(-3,1)$. In this case the only self-adjoint extension is the Friedrichs extension $\Delta_F$, that does not allow comm...