We classify the self-adjoint realisations of the Laplace-Beltrami operator minimally defined on an infinite cylinder equipped with an incomplete Riemannian metric of Grushin type, in the non-trivial class of metrics yielding an infinite deficiency index. Such realisations are naturally interpreted as Hamiltonians governing the geometric confinement of a Schr"{o}dinger quantum particle away from the singularity, or the dynamical transmission across the singularity. In particular, we characterise all physically meaningful extensions qualified by explicit local boundary conditions at the singularity. Within our general classification we retrieve those distinguished extensions previously identified in the recent literature, namely the most conf...