International audienceNonlinear optimal perturbations leading to subcritical transition with minimum threshold energy are searched in the plane Poiseuille flow at Re = 1500. To this end we proceed in two steps. First a family of optimally growing primary streaks U issued by the optimal vortices of the Poiseuille laminar solution is computed by direct numerical simulation for a set of finite amplitudes A(l) of the primary vortices. An adjoint technique is then used to compute the maximum growth and the finite time Lyapunov exponents of secondary perturbations growing on top of these primary base flows. The secondary optimals take into full account the non-normality and the local instabilities of the tangent operator all along the temporal ev...
International audienceSubcritical flows may experience large transient perturbation energy amplifica...
Certain laminar flows are known to be linearly stable at all Reynolds numbers, R, although in practi...
Certain laminar flows are known to be linearly stable at all Reynolds numbers, R, although in practi...
International audienceNonlinear optimal perturbations leading to subcritical transition with minimum...
Subcritical transition in plane Poiseuilleflow is investigated by means of aLagrange-multiplier dire...
International audienceSubcritical transition in plane Poiseuilleflow is investigated by means of aLa...
International audienceThe optimal growth of perturbations to transiently growing streaks is studied ...
International audienceThe optimal growth of perturbations to transiently growing streaks is studied ...
Subcritical transition in plane Poiseuilleflow is investigated by means of aLagrange-multiplier dire...
Subcritical transition to turbulence can occur in a variety of wall-bounded shear flows when the lam...
In this work it is shown that hairpin vortex structures can be the outcome of a nonlinear optimal gr...
In this work it is shown that hairpin vortex structures can be the outcome of a nonlinear optimal gr...
Optimal perturbations for the family of three-dimensional boundary layers described by the Falkner{S...
International audienceSubcritical flows may experience large transient perturbation energy amplifica...
International audienceFor flows subject to subcritical instabilities the stability of the basic flow...
International audienceSubcritical flows may experience large transient perturbation energy amplifica...
Certain laminar flows are known to be linearly stable at all Reynolds numbers, R, although in practi...
Certain laminar flows are known to be linearly stable at all Reynolds numbers, R, although in practi...
International audienceNonlinear optimal perturbations leading to subcritical transition with minimum...
Subcritical transition in plane Poiseuilleflow is investigated by means of aLagrange-multiplier dire...
International audienceSubcritical transition in plane Poiseuilleflow is investigated by means of aLa...
International audienceThe optimal growth of perturbations to transiently growing streaks is studied ...
International audienceThe optimal growth of perturbations to transiently growing streaks is studied ...
Subcritical transition in plane Poiseuilleflow is investigated by means of aLagrange-multiplier dire...
Subcritical transition to turbulence can occur in a variety of wall-bounded shear flows when the lam...
In this work it is shown that hairpin vortex structures can be the outcome of a nonlinear optimal gr...
In this work it is shown that hairpin vortex structures can be the outcome of a nonlinear optimal gr...
Optimal perturbations for the family of three-dimensional boundary layers described by the Falkner{S...
International audienceSubcritical flows may experience large transient perturbation energy amplifica...
International audienceFor flows subject to subcritical instabilities the stability of the basic flow...
International audienceSubcritical flows may experience large transient perturbation energy amplifica...
Certain laminar flows are known to be linearly stable at all Reynolds numbers, R, although in practi...
Certain laminar flows are known to be linearly stable at all Reynolds numbers, R, although in practi...