International audienceWe present a simple framework for solving different ill-posed inverse problems in image processing by means of constrained total variation minimizations. We argue that drawbacks commonly attributed to total variation algorithms (slowness and incomplete fit to the image model) can be easily bypassed by performing only a few number of iterations in our optimization process. We illustrate this approach in the context of computerized tomography, that comes down to inverse a Radon transform obtained by illuminating an object by straight and parallel beams of x-rays. This problem is ill-posed because only a finite number of line integrals can be measured, resulting in an incomplete coverage of the frequency plane and requiri...