Nonlinear dynamic memory elements, as memristors, memcapacitors, and meminductors (also known as mem-elements), are of paramount importance in conceiving the neural networks, mem-computing machines, and reservoir computing systems with advanced computational primitives. This paper aims to develop a systematic methodology for analyzing complex dynamics in nonlinear networks with such emerging nanoscale mem-elements. The technique extends the flux-charge analysis method (FCAM) for nonlinear circuits with memristors to a broader class of nonlinear networks N containing also memcapacitors and meminductors. After deriving the constitutive relation and equivalent circuit in the flux-charge domain of each two-terminal element in N, this paper focu...