International audienceThe topic of clustering has been widely studied in the field of Data Analysis, where it is defined as an unsupervised process of grouping objects together based on notions of similarity. Clustering in the field of Multi-Criteria Decision Aid (MCDA) has seen a few adaptations of methods from Data Analysis, most of them however using concepts native to that field, such as the notions of similarity and distance measures. As in MCDA we model the preferences of a decision maker over a set of decision alternatives, we can find more diverse ways of comparing them than in Data Analysis. As a result, these alternatives may also be arranged into different potential structures. In this presentation we wish to formally define the ...