This work addresses the joint analysis of multi-source and multi-resolution remote sensing data for the interpolation of high-resolution geophysical fields. As case-study application, we consider the interpolation of sea surface temperature fields. We propose a novel statistical model, which combines two key features: an exemplar-based prior and second-order statistical priors. The exemplar-based prior, referred to as a non-local prior, exploits similarities between local patches (small field regions) to interpolate missing data areas from previously observed exemplars. This non-local prior also sets an explicit conditioning between the multi-sensor data. Two complementary statistical priors, namely a prior on the spatial covariance and a p...