19 pages, 2 figuresInternational audienceThis paper was motivated by a conjecture of Br\"{a}nd\'{e}n (European J. Combin. \textbf{29} (2008), no.~2, 514--531) about the divisibility of the coefficients in an expansion of generalized Eulerian polynomials, which implies the symmetric and unimodal property of the Eulerian numbers. We show that such a formula with the conjectured property can be derived from the combinatorial theory of continued fractions. We also discuss an analogous expansion for the corresponding formula for derangements and prove a $(p,q)$-analogue of the fact that the (-1)-evaluation of the enumerator polynomials of permutations (resp. derangements) by the number of excedances gives rise to tangent numbers (resp. secant nu...