International audienceWe propose a general adaptive LASSO method for a quantile regression model. Our method is very interesting when we know nothing about the first two moments of the model error. We first prove that the obtained estimators satisfy the oracle properties, which involves the relevant variable selection without using hypothesis test. Next, we study the proposed method when the (multiphase) model changes to unknown observations called change-points. Convergence rates of the change-points and of the regression parameter estimators in each phase are found. The sparsity of the adaptive LASSO quantile estimators of the regression parameters is not affected by the change-points estimation. If the number of phases is unknown, a cons...