Under single-level lot-sizing problem, well known Wagner-Whitin algorithm based on Dynamic Programming (DP) provides optimal order schedule. Order schedule does not work properly under Manufacturing Resource Planning (MRP II), where it is considered multi-level capacitated problem and requirements of subcomponents are depend on the parent product. In this paper, we formulate a multi-level capacitated optimization model and develop a relatively efficient heuristic working under MRP II environment which considers work center capacities and interrelationship between levels in lot-sizing computation. © 1998 Published by Elsevier Science Ltd. All rights reserved
154 p.Thesis (Ph.D.)--University of Illinois at Urbana-Champaign, 1986.The area of Material Requirem...
In this paper, the capacitated dynamic lot sizing problem in integrated manufac-turing/remanufacturi...
This paper discusses several approaches to solve production planning problems especially in the area...
Under single-level lot-sizing problem, well known Wagner-Whitin algorithm based on Dynamic Programmi...
Under single-level lot-sizing problem, well known Wagner-Whitin algorithm based on Dynamic Programmi...
In this paper, a case study is carried out concerning the lot-sizing problem involving a single item...
MRP Theory combines the use of Input-Output Analysis and Laplace transforms, enabling the developmen...
MRP Theory combines the use of Input-Output Analysis and Laplace transforms, enabling the developmen...
MRP Theory combines the use of Input-Output Analysis and Laplace transforms, enabling the developmen...
Lot sizing is one of the most important and also one of the most difficult problems in production pl...
The lot-sizing problem in capacitated multi-stage systems with a serial product structure is address...
154 p.Thesis (Ph.D.)--University of Illinois at Urbana-Champaign, 1986.The area of Material Requirem...
Material requirements planning (MRP) is a basic tool for performing detailed material planning funct...
This paper tackles Materials Requirements Planning (MRP), a tool which is fast gaining acceptance in...
This paper tackles Materials Requirements Planning (MRP), a tool which is fast gaining acceptance in...
154 p.Thesis (Ph.D.)--University of Illinois at Urbana-Champaign, 1986.The area of Material Requirem...
In this paper, the capacitated dynamic lot sizing problem in integrated manufac-turing/remanufacturi...
This paper discusses several approaches to solve production planning problems especially in the area...
Under single-level lot-sizing problem, well known Wagner-Whitin algorithm based on Dynamic Programmi...
Under single-level lot-sizing problem, well known Wagner-Whitin algorithm based on Dynamic Programmi...
In this paper, a case study is carried out concerning the lot-sizing problem involving a single item...
MRP Theory combines the use of Input-Output Analysis and Laplace transforms, enabling the developmen...
MRP Theory combines the use of Input-Output Analysis and Laplace transforms, enabling the developmen...
MRP Theory combines the use of Input-Output Analysis and Laplace transforms, enabling the developmen...
Lot sizing is one of the most important and also one of the most difficult problems in production pl...
The lot-sizing problem in capacitated multi-stage systems with a serial product structure is address...
154 p.Thesis (Ph.D.)--University of Illinois at Urbana-Champaign, 1986.The area of Material Requirem...
Material requirements planning (MRP) is a basic tool for performing detailed material planning funct...
This paper tackles Materials Requirements Planning (MRP), a tool which is fast gaining acceptance in...
This paper tackles Materials Requirements Planning (MRP), a tool which is fast gaining acceptance in...
154 p.Thesis (Ph.D.)--University of Illinois at Urbana-Champaign, 1986.The area of Material Requirem...
In this paper, the capacitated dynamic lot sizing problem in integrated manufac-turing/remanufacturi...
This paper discusses several approaches to solve production planning problems especially in the area...