50 pages.International audienceIn this paper we study the parabolic Anderson equation \partial u(x,t)/\partial t=\kappa\Delta u(x,t)+\xi(x,t)u(x,t), x\in\Z^d, t\geq 0, where the u-field and the \xi-field are \R-valued, \kappa \in [0,\infty) is the diffusion constant, and $\Delta$ is the discrete Laplacian. The initial condition u(x,0)=u_0(x), x\in\Z^d, is taken to be non-negative and bounded. The solution of the parabolic Anderson equation describes the evolution of a field of particles performing independent simple random walks with binary branching: particles jump at rate 2d\kappa, split into two at rate \xi\vee 0, and die at rate (-\xi)\vee 0. Our goal is to prove a number of basic properties of the solution u under assumptions on $\xi$ ...