Media processing applications typically involve numerical blocks that exhibit regular floating-point computation patterns. For processors whose architecture supports only integer arithmetic, these patterns can be profitably turned into custom operators, coming in addition to the five basic ones (+, -, X, / and √), but achieving better performance by treating more operations. This thesis addresses the design of such custom operators as well as the techniques developed in the compiler to select them in application codes. We have designed optimized implementations for a set of custom operators which includes squaring, scaling, adding two nonnegative terms, fused multiply-add, fused square-add (x*x+z, with z>=0), two-dimensional dot products (D...