La modélisation de distributions continues multivariées est une tâche d'un intérêt central en statistiques et en apprentissage automatique avec de nombreuses applications en sciences et en ingénierie. Cependant, les distributions de grandes dimensions sont difficiles à manipuler et peuvent conduire à des calculs coûteux en temps et en ressources. Les réseaux bayésiens de copules (CBNs) tirent parti à la fois des réseaux bayésiens (BNs) et de la théorie des copules pour représenter de manière compacte de telles distributions multivariées. Les réseaux bayésiens s'appuient sur les indépendances conditionnelles afin de réduire la complexité du problème, tandis que les fonctions copules permettent de modéliser les relations de dépendance entre l...
Learning the structure of probabilistic graphi-cal models for complex real-valued domains is a formi...
l'Auteur Gildas Mazo est actuellement à l'INRA Centre de Jouy-en-Josas - Unité MaIAGEInternational a...
Learning a Bayesian network consists in estimating the graph (structure) and the parameters of condi...
Modeling multivariate continuous distributions is a task of central interest in statistics and machi...
We propose a new framework to learn non-parametric graphical models from continuous observational da...
A new methodology for selecting a Bayesian network for continuous data outside the widely used class...
Abstract. Pair-copula Bayesian networks (PCBNs) are a novel class of multivariate statistical models...
<p>Pair-copula Bayesian networks (PCBNs) are a novel class of multivariate statistical models, which...
Due to technological breakthrough in recent decades and the rapid increase in the availability of mu...
Copulas allow to learn marginal distributions separately from the multivariate dependence structure ...
The objective of this thesis is to design an algorithm for learning the structure of non-parametric ...
Learning the joint dependence of discrete variables is a fundamental problem in machine learning, wi...
Plusieurs algorithmes à base de contrainte ont été proposés récemment pour l\u27apprentissage de la ...
Bayesian networks are extensively studied in machine learning and there is a significant growing int...
Copulas allow to learn marginal distributions separately from the multivariate dependence structure ...
Learning the structure of probabilistic graphi-cal models for complex real-valued domains is a formi...
l'Auteur Gildas Mazo est actuellement à l'INRA Centre de Jouy-en-Josas - Unité MaIAGEInternational a...
Learning a Bayesian network consists in estimating the graph (structure) and the parameters of condi...
Modeling multivariate continuous distributions is a task of central interest in statistics and machi...
We propose a new framework to learn non-parametric graphical models from continuous observational da...
A new methodology for selecting a Bayesian network for continuous data outside the widely used class...
Abstract. Pair-copula Bayesian networks (PCBNs) are a novel class of multivariate statistical models...
<p>Pair-copula Bayesian networks (PCBNs) are a novel class of multivariate statistical models, which...
Due to technological breakthrough in recent decades and the rapid increase in the availability of mu...
Copulas allow to learn marginal distributions separately from the multivariate dependence structure ...
The objective of this thesis is to design an algorithm for learning the structure of non-parametric ...
Learning the joint dependence of discrete variables is a fundamental problem in machine learning, wi...
Plusieurs algorithmes à base de contrainte ont été proposés récemment pour l\u27apprentissage de la ...
Bayesian networks are extensively studied in machine learning and there is a significant growing int...
Copulas allow to learn marginal distributions separately from the multivariate dependence structure ...
Learning the structure of probabilistic graphi-cal models for complex real-valued domains is a formi...
l'Auteur Gildas Mazo est actuellement à l'INRA Centre de Jouy-en-Josas - Unité MaIAGEInternational a...
Learning a Bayesian network consists in estimating the graph (structure) and the parameters of condi...