Dans un premier temps, on montre l'existence d'opérateurs sectoriels A bornés de type 0 (respectivement d'opérateurs de Ritt T) tels que l'ensemble {e^{-tA}: tgeq 0} n'est pas gamma-borné (respectivement l'ensemble {T^n: nin N} n'est pas gamma-borné).Dans le second chapitre nous étudions les C_0-semigroupes gamma-bornés sur un espace de Banach. Nous généralisons le Théorème de Gomilko Shi-Feng aux espaces de Banach ce qui nous donne une caractérisation des C_0-semigroupes gamma-bornés. De plus nous étudions le calcul dérivé introduit par Batty Haase et Mubeen dans ce contexte.Le chapitre suivant est consacré à l'étude des opérateurs qui satisfont une condition appelée dans le mémoire condition de Gomilko Shi-Feng. Nous montrons que cette co...
Let $(T(t))_{t\geq 0}$ be a strongly continuous $C_0$-semigroup of bounded linear operators on a Ban...
Let $A$ be the generator of a uniformly bounded $C_0$-semigroup on the Banach space $X$. We present ...
C0-semigroups of linear operators play a crucial role in the solvability of evolution equa-tions in ...
Dans un premier temps, on montre l'existence d'opérateurs sectoriels A bornés de type 0 (respectivem...
First and foremost we show that there exist bounded sectorial operators A of type 0 (respectively Ri...
We introduce a new Banach algebra ${\mathcal A}({\mathbb C}_+)$ of bounded analytic functions on ${\...
Delft Institute of Applied MathematicsElectrical Engineering, Mathematics and Computer Scienc
These lectures review theH∞-functional calculus of sectorial operators and related classes of unboun...
[EN] Let (T(t))t>0 be a strongly continuous C0-semigroup of bounded linear operators on a Banach sp...
In this work, we present an introduction to the theory of C0-semigroup (and C0-group) of bounded li...
This article is an extended version of three lectures given at the 4th Advanced Course in Operator T...
In this paper we study the question whether $A^{-1}$ is the infinitesimal generator of a bounded $C_...
We present a short elementary proof of the Gearhart–Prüss theorem for bounded C0-semigroups on Hilbe...
AbstractIt is well-known that π2-sectorial operators generally do not admit a bounded H∞ calculus ov...
The thesis is concerned with the smooth functional calculus for operators with spectrum in the posit...
Let $(T(t))_{t\geq 0}$ be a strongly continuous $C_0$-semigroup of bounded linear operators on a Ban...
Let $A$ be the generator of a uniformly bounded $C_0$-semigroup on the Banach space $X$. We present ...
C0-semigroups of linear operators play a crucial role in the solvability of evolution equa-tions in ...
Dans un premier temps, on montre l'existence d'opérateurs sectoriels A bornés de type 0 (respectivem...
First and foremost we show that there exist bounded sectorial operators A of type 0 (respectively Ri...
We introduce a new Banach algebra ${\mathcal A}({\mathbb C}_+)$ of bounded analytic functions on ${\...
Delft Institute of Applied MathematicsElectrical Engineering, Mathematics and Computer Scienc
These lectures review theH∞-functional calculus of sectorial operators and related classes of unboun...
[EN] Let (T(t))t>0 be a strongly continuous C0-semigroup of bounded linear operators on a Banach sp...
In this work, we present an introduction to the theory of C0-semigroup (and C0-group) of bounded li...
This article is an extended version of three lectures given at the 4th Advanced Course in Operator T...
In this paper we study the question whether $A^{-1}$ is the infinitesimal generator of a bounded $C_...
We present a short elementary proof of the Gearhart–Prüss theorem for bounded C0-semigroups on Hilbe...
AbstractIt is well-known that π2-sectorial operators generally do not admit a bounded H∞ calculus ov...
The thesis is concerned with the smooth functional calculus for operators with spectrum in the posit...
Let $(T(t))_{t\geq 0}$ be a strongly continuous $C_0$-semigroup of bounded linear operators on a Ban...
Let $A$ be the generator of a uniformly bounded $C_0$-semigroup on the Banach space $X$. We present ...
C0-semigroups of linear operators play a crucial role in the solvability of evolution equa-tions in ...