We suggest and investigate the use of Generalized Matrix Relevance Learning (GMLVQ) in the context of discriminative visualization. This prototype-based, supervised learning scheme parameterizes an adaptive distance measure in terms of a matrix of relevance factors. By means of a few benchmark problems, we demonstrate that the training process yields low rank matrices which can be used efficiently for the discriminative visualization of labeled data. Comparison with well known standard methods illustrate the flexibility and discriminative power of the novel approach. The mathematical analysis of GMLVQ shows that the corresponding stationarity condition can be formulated as an eigenvalue problem with one or several strongly dominating eigenv...