De oplossing van grote en schaarse lineaire systemen is een kritieke component van moderne wetenschap en technische simulaties. Iteratieve methoden, namelijk de klasse van moderne Krylov-subruimtemethoden, worden vaak gebruikt om grootschalige lineaire systemen op te lossen. Om de robuustheid en de convergentiesnelheid van de iteratieve methoden te verbeteren, worden preconditioneringstechnieken vaak beschouwd als cruciale componenten van de lineaire systeemoplossing. In dit proefschrift wordt een klasse van algebraïsche multilevel oplossers gepresenteerd voor het conditioneren van algemene lineaire systeemvergelijkingen die voortkomen uit computationele wetenschap en technische toepassingen. Ze kunnen spaarzame patronen produceren en geheu...
This book describes, in a basic way, the most useful and effective iterative solvers and appropriate...
Solving large-scale systems of linear equations [] { } {}bxA = is one of the most expensive and cr...
The FE numerical discretization of complex geomechanical models usually gives rise to non-linear sys...
De oplossing van grote en schaarse lineaire systemen is een kritieke component van moderne wetenscha...
In this paper we introduce an algebraic recursive multilevel incomplete factorization preconditioner...
Cette thèse traite d’une nouvelle classe de préconditionneurs qui ont pour but d’accélérer la résolu...
University of Minnesota Ph.D. dissertation. December 2011. Major: Scientific Computation. Advisor: ...
In this paper, we introduce a class of recursive multilevel preconditioning strategies suited for so...
AbstractThis paper introduces several strategies to deal with pivot blocks in multi-level block inco...
Factorization based preconditioning algorithms, most notably incomplete LU (ILU) factorization, have...
This article surveys preconditioning techniques for the iterative solution of large linear systems, ...
University of Minnesota Ph.D. dissertation. June 2015. Major: Computer Science. Advisor: Yousef Saad...
This thesis is concerned with the solution of large nonsymmetric sparse linear systems. The main foc...
When simulating a mechanism from science or engineering, or an industrial process, one is frequently...
This book describes, in a basic way, the most useful and effective iterative solvers and appropriate...
Solving large-scale systems of linear equations [] { } {}bxA = is one of the most expensive and cr...
The FE numerical discretization of complex geomechanical models usually gives rise to non-linear sys...
De oplossing van grote en schaarse lineaire systemen is een kritieke component van moderne wetenscha...
In this paper we introduce an algebraic recursive multilevel incomplete factorization preconditioner...
Cette thèse traite d’une nouvelle classe de préconditionneurs qui ont pour but d’accélérer la résolu...
University of Minnesota Ph.D. dissertation. December 2011. Major: Scientific Computation. Advisor: ...
In this paper, we introduce a class of recursive multilevel preconditioning strategies suited for so...
AbstractThis paper introduces several strategies to deal with pivot blocks in multi-level block inco...
Factorization based preconditioning algorithms, most notably incomplete LU (ILU) factorization, have...
This article surveys preconditioning techniques for the iterative solution of large linear systems, ...
University of Minnesota Ph.D. dissertation. June 2015. Major: Computer Science. Advisor: Yousef Saad...
This thesis is concerned with the solution of large nonsymmetric sparse linear systems. The main foc...
When simulating a mechanism from science or engineering, or an industrial process, one is frequently...
This book describes, in a basic way, the most useful and effective iterative solvers and appropriate...
Solving large-scale systems of linear equations [] { } {}bxA = is one of the most expensive and cr...
The FE numerical discretization of complex geomechanical models usually gives rise to non-linear sys...