textI develop a numerical method that combines functional approximations and dynamic programming to solve high-dimensional discrete-time stochastic control problems under general constraints. The method relies on three building blocks: first, a quasi-random grid and the radial basis function method are used to discretize and interpolate the high-dimensional state space; second, to incorporate constraints, the method of Lagrange multipliers is applied to obtain the first order optimality conditions; third, the conditional expectation of the value function is approximated by a second order polynomial basis, estimated using ordinary least squares regressions. To reduce the approximation error, I introduce the test region iterative contraction ...
In this paper we develop several regression algorithms for solving general stochastic optimal contro...
Stochastic optimization and simulation are two of the most fundamental research areas in Operations ...
Stochastic optimization problems with an objective function that is additive over a finite number of...
textI develop a numerical method that combines functional approximations and dynamic programming to ...
Consider a system S specified at any time t by a finite dimensional vector x(t) satisfying a vector ...
The Galerkin method is a classical technique for approximating infinite-dimensional opti-mization pr...
Inspired by the successful applications of the stochastic optimization with second order stochastic ...
Financial options are contracts which define rights on stocks in a financial market. Real options ar...
We consider a portfolio optimization problem which is formulated as a stochastic control problem. Ri...
Discrete-time stochastic optimal control problems are stated over a finite number of decision stages...
This thesis proposes different problems of stochastic control and optimization that can be solved on...
In this paper we develop several regression algorithms for solving general stochastic optimal contro...
An approximation approach with computable error bounds is derived for a class of stochastic dynamic ...
Stochastic control refers to the optimal control of systems subject to randomness. Impulse and singu...
Sequential decision-making via dynamic programming. Unified approach to optimal control of stochasti...
In this paper we develop several regression algorithms for solving general stochastic optimal contro...
Stochastic optimization and simulation are two of the most fundamental research areas in Operations ...
Stochastic optimization problems with an objective function that is additive over a finite number of...
textI develop a numerical method that combines functional approximations and dynamic programming to ...
Consider a system S specified at any time t by a finite dimensional vector x(t) satisfying a vector ...
The Galerkin method is a classical technique for approximating infinite-dimensional opti-mization pr...
Inspired by the successful applications of the stochastic optimization with second order stochastic ...
Financial options are contracts which define rights on stocks in a financial market. Real options ar...
We consider a portfolio optimization problem which is formulated as a stochastic control problem. Ri...
Discrete-time stochastic optimal control problems are stated over a finite number of decision stages...
This thesis proposes different problems of stochastic control and optimization that can be solved on...
In this paper we develop several regression algorithms for solving general stochastic optimal contro...
An approximation approach with computable error bounds is derived for a class of stochastic dynamic ...
Stochastic control refers to the optimal control of systems subject to randomness. Impulse and singu...
Sequential decision-making via dynamic programming. Unified approach to optimal control of stochasti...
In this paper we develop several regression algorithms for solving general stochastic optimal contro...
Stochastic optimization and simulation are two of the most fundamental research areas in Operations ...
Stochastic optimization problems with an objective function that is additive over a finite number of...