textThe Navier-Stokes equations describe the motion of an incompressible fluid of constant density and constant positive viscosity. With zero viscosity, the Navier-Stokes equations become the Euler equations. A question of longstanding interest to mathematicians and physicists is whether, as the viscosity goes to zero, a solution to the Navier-Stokes equations converges, in an appropriate sense, to a solution to the Euler equations: the so-called “vanishing viscosity” or “inviscid” limit. We investigate this question in three settings: in the whole plane, in a bounded domain in the plane, and for radially symmetric solutions in the whole plane. Working in the whole plane and in a bounded domain, we assume a particular bound on the ...