International audienceIn this paper, we study structures such as distributive lattices, distributive semilattices, and median graphs from an algorithmic point of view. Such structures are very useful in classification and phylogeny for representing lineage relationships for example. A distributive lattice can be considered as a median graph while a distributive ∨-semilattice can be considered as a median graph provided that some conditions holding on triple of elements are satisfied. Starting from a lattice structure with different representations, we study the problem of building a median graph from such structures. We make precise and propose algorithms for checking how a lattice can be distributive and can be a median graph. Then, we ada...