International audienceIt is proposed here to describe smectite water vapor desorption isotherms using an exchange formalism that quantitatively accounts for the different hydration states and thus different water contents. This approach makes it possible to reproduce both desorption isotherms and relative proportions of the different hydration states as determined by X-ray diffraction. The method is numerically robust and easy to implement in most reactive transport codes. The formalism is satisfactory from a phenomenological point of view and accounts for the influence of external parameters such as interlayer cation composition and solution cation composition and salinity on clay hydration. Furthermore, in contrast to most solid solution ...