The focus of this study is to investigate primary and secondary bifurcations to weakly nonlinear flows (weak branch) in convective rotating spheres in a regime where only strongly nonlinear oscillatory sub- and supercritical flows (strong branch) were previously found [E. J. Kaplan, N. Schaeffer, J. Vidal, and P. Cardin, Phys. Rev. Lett. 119, 094501 (2017)]. The relevant regime corresponds to low Prandtl and Ekman numbers, indicating a predominance of Coriolis forces and thermal diffusion in the system. We provide the bifurcation diagrams for rotating waves (RWs) computed by means of continuation methods and the corresponding stability analysis of these periodic flows to detect secondary bifurcations giving rise to quasiperiodic modulated r...