The real-time operation of a fleet of vehicles introduces challenging optimization problems researches in a wide range of applications, thus, it is appealing to both academia and practitioners in industry. In this work we focus on dynamic vehicle routing problems and present an event-driven framework that can anticipate unknown changes in the problem information. The proposed framework is intrinsically parallelized to take advantage of modern multi-core and multi-threaded computing architectures. It is also designed to be easily embeddable in decision support systems that cope with a wide range of contexts and side constraints. We illustrate the flexibility of the framework by showing how it can be adapted to tackle the dynamic vehicle rout...