International audienceLet $X_{m,d}\subset \mathbb {P}^N$, $N:= \binom{m+d}{m}-1$, be the order $d$ Veronese embedding of $\mathbb {P}^m$. Let $\tau (X_{m,d})\subset \mathbb {P}^N$, be the tangent developable of $X_{m,d}$. For each integer $t \ge 2$ let $\tau (X_{m,d},t)\subseteq \mathbb {P}^N$, be the join of $\tau (X_{m,d})$ and $t-2$ copies of $X_{m,d}$. Here we prove that if $m\ge 2$, $d\ge 7$ and $t \le 1 + \lfloor \binom{m+d-2}{m}/(m+1)\rfloor$, then for a general $P\in \tau (X_{m,d},t)$ there are uniquely determined $P_1,\dots ,P_{t-2}\in X_{m,d}$ and a unique tangent vector $\nu$ of $X_{m,d}$ such that $P$ is in the linear span of $\nu \cup \{P_1,\dots ,P_{t-2}\}$, i.e. a degree $d$ linear form $f$ (a symmetric tensor $T$ of order $d...
Various authors like R. Miron, M. Anastasiei, H. Shimada, T. Kawaguchi, U. P. Singh have studied Lag...
In this paper, we investigate the polynomial numerical index (n^{(k)}(l_p),) the symmetric multiline...
AbstractThe n-th product level of a skew–field D, psn(D), is a generalization of the n-th level of a...
International audienceLet $X_{m,d}\subset \mathbb {P}^N$, $N:= \binom{m+d}{m}-1$, be the order $d$ V...
Let $X_{m,d}\subset \mathbb {P}^N$, $N:= \binom{m+d}{m}-1$, be the order $d$ Veronese embedding of...
Let $X_{m,d}\subset \mathbb {P}^N$, $N:= \binom{m+d}{m}-1$, be the order $d$ Veronese embedding of...
AbstractGiven positive integers n and p, and a complex finite dimensional vector space V, we let Sn,...
$TS^{2}$ is a differentiable manifold of dimension 4. For every $% Xin TS^{2}$, if we set $X=(p,x)$ ...
Let $\mathbb{K}$ be the Galois field $\mathbb{F}_{q^t}$ of order $q^t, q=p^e, p$ a prime, $A=\mathrm...
AbstractA generalization of Picone’s formula to the case of half-linear differential operators of th...
AbstractThe purpose of the paper is for any compactum K⊂Rn to construct a space Cp(K) of commutative...
AbstractA series of basic summability results are established for matrices of linear and some nonlin...
AbstractIn this paper we give an existence and uniqueness theorem for a nonlinear second order homog...
International audienceThis work enrols the research line of M. Haiman on the Operator Theorem (the o...
AbstractWe prove that if Uℏ(g) is a quasitriangular QUE algebra with universal R-matrix R, and Oℏ(G∗...
Various authors like R. Miron, M. Anastasiei, H. Shimada, T. Kawaguchi, U. P. Singh have studied Lag...
In this paper, we investigate the polynomial numerical index (n^{(k)}(l_p),) the symmetric multiline...
AbstractThe n-th product level of a skew–field D, psn(D), is a generalization of the n-th level of a...
International audienceLet $X_{m,d}\subset \mathbb {P}^N$, $N:= \binom{m+d}{m}-1$, be the order $d$ V...
Let $X_{m,d}\subset \mathbb {P}^N$, $N:= \binom{m+d}{m}-1$, be the order $d$ Veronese embedding of...
Let $X_{m,d}\subset \mathbb {P}^N$, $N:= \binom{m+d}{m}-1$, be the order $d$ Veronese embedding of...
AbstractGiven positive integers n and p, and a complex finite dimensional vector space V, we let Sn,...
$TS^{2}$ is a differentiable manifold of dimension 4. For every $% Xin TS^{2}$, if we set $X=(p,x)$ ...
Let $\mathbb{K}$ be the Galois field $\mathbb{F}_{q^t}$ of order $q^t, q=p^e, p$ a prime, $A=\mathrm...
AbstractA generalization of Picone’s formula to the case of half-linear differential operators of th...
AbstractThe purpose of the paper is for any compactum K⊂Rn to construct a space Cp(K) of commutative...
AbstractA series of basic summability results are established for matrices of linear and some nonlin...
AbstractIn this paper we give an existence and uniqueness theorem for a nonlinear second order homog...
International audienceThis work enrols the research line of M. Haiman on the Operator Theorem (the o...
AbstractWe prove that if Uℏ(g) is a quasitriangular QUE algebra with universal R-matrix R, and Oℏ(G∗...
Various authors like R. Miron, M. Anastasiei, H. Shimada, T. Kawaguchi, U. P. Singh have studied Lag...
In this paper, we investigate the polynomial numerical index (n^{(k)}(l_p),) the symmetric multiline...
AbstractThe n-th product level of a skew–field D, psn(D), is a generalization of the n-th level of a...