Let $X_{m,d}\subset \mathbb {P}^N$, $N:= \binom{m+d}{m}-1$, be the order $d$ Veronese embedding of $\mathbb {P}^m$. Let $\tau (X_{m,d})\subset \mathbb {P}^N$, be the tangent developable of $X_{m,d}$. For each integer $t \ge 2$ let $\tau (X_{m,d},t)\subseteq \mathbb {P}^N$, be the joint of $\tau (X_{m,d})$ and $t-2$ copies of $X_{m,d}$. Here we prove that if $m\ge 2$, $d\ge 7$ and $t \le 1 + \lfloor \binom{m+d-2}{m}/(m+1)\rfloor$, then for a general $P\in \tau (X_{m,d},t)$ there are uniquely determined $P_1,\dots ,P_{t-2}\in X_{m,d}$ and a unique tangent vector $\nu$ of $X_{m,d}$ such that $P$ is in the linear span of $\nu \cup \{P_1,\dots ,P_{t-2}\}$, i.e. a degree $d$ linear form $f$ associated to $P$ may be written as $$f = L_{t-1}...
$TS^{2}$ is a differentiable manifold of dimension 4. For every $% Xin TS^{2}$, if we set $X=(p,x)$ ...
For a given monic integral polynomial $f(x)$ of degree $n$, we define local roots $r_i$ of $f(x)$ fo...
Let m,n be positive integers with 1 nδ and n>(8× 1016(log(1016/θ3))3/θ3)1/θ, where θ=min(1-δ, 2δ-1),...
Let $X_{m,d}\subset \mathbb {P}^N$, $N:= \binom{m+d}{m}-1$, be the order $d$ Veronese embedding of...
International audienceLet $X_{m,d}\subset \mathbb {P}^N$, $N:= \binom{m+d}{m}-1$, be the order $d$ V...
International audienceLet $X_{m,d}\subset \mathbb {P}^N$, $N:= \binom{m+d}{m}-1$, be the order $d$ V...
Let $\mathbb{K}$ be the Galois field $\mathbb{F}_{q^t}$ of order $q^t, q=p^e, p$ a prime, $A=\mathrm...
Let $C \subset \mathbf{P}^3$ be an integral projective curve not contained in a quadric surface. Set...
AbstractThe purpose of the paper is for any compactum K⊂Rn to construct a space Cp(K) of commutative...
In case Krein's strings with spectral functions of polynomial growth a necessary and su fficient con...
AbstractLet $$X\subset \mathbb {P}^3$$ X ...
AbstractIn this paper, some new generalized contractive type conditions for a pair of mappings in me...
International audienceLemma C.1 in [R. Veltz and O. Faugeras, SIAM J. Math. Anal., 45(3) (2013), pp....
AbstractLet I(n, t) be the class of all t -intersecting families of subsets of [ n ] and set Ik(n, t...
AbstractA generalization of Picone’s formula to the case of half-linear differential operators of th...
$TS^{2}$ is a differentiable manifold of dimension 4. For every $% Xin TS^{2}$, if we set $X=(p,x)$ ...
For a given monic integral polynomial $f(x)$ of degree $n$, we define local roots $r_i$ of $f(x)$ fo...
Let m,n be positive integers with 1 nδ and n>(8× 1016(log(1016/θ3))3/θ3)1/θ, where θ=min(1-δ, 2δ-1),...
Let $X_{m,d}\subset \mathbb {P}^N$, $N:= \binom{m+d}{m}-1$, be the order $d$ Veronese embedding of...
International audienceLet $X_{m,d}\subset \mathbb {P}^N$, $N:= \binom{m+d}{m}-1$, be the order $d$ V...
International audienceLet $X_{m,d}\subset \mathbb {P}^N$, $N:= \binom{m+d}{m}-1$, be the order $d$ V...
Let $\mathbb{K}$ be the Galois field $\mathbb{F}_{q^t}$ of order $q^t, q=p^e, p$ a prime, $A=\mathrm...
Let $C \subset \mathbf{P}^3$ be an integral projective curve not contained in a quadric surface. Set...
AbstractThe purpose of the paper is for any compactum K⊂Rn to construct a space Cp(K) of commutative...
In case Krein's strings with spectral functions of polynomial growth a necessary and su fficient con...
AbstractLet $$X\subset \mathbb {P}^3$$ X ...
AbstractIn this paper, some new generalized contractive type conditions for a pair of mappings in me...
International audienceLemma C.1 in [R. Veltz and O. Faugeras, SIAM J. Math. Anal., 45(3) (2013), pp....
AbstractLet I(n, t) be the class of all t -intersecting families of subsets of [ n ] and set Ik(n, t...
AbstractA generalization of Picone’s formula to the case of half-linear differential operators of th...
$TS^{2}$ is a differentiable manifold of dimension 4. For every $% Xin TS^{2}$, if we set $X=(p,x)$ ...
For a given monic integral polynomial $f(x)$ of degree $n$, we define local roots $r_i$ of $f(x)$ fo...
Let m,n be positive integers with 1 nδ and n>(8× 1016(log(1016/θ3))3/θ3)1/θ, where θ=min(1-δ, 2δ-1),...