We study the local regularity and multifractal nature of the sample paths of jump diffusion processes, which are solutions to a class of stochastic differential equations with jumps. This article extends the recent work of Barral et al. who constructed a pure jump monotone Markov process with random multifractal spectrum. The class of processes studied here is much larger and exhibits novel features on the extreme values of the spectrum. This class includes Bass' stable-like processes and non-degenerate stable-driven SDEs
This thesis mainly studies the 3D homogeneous Boltzmann equation for hard potentials and moderately ...
On étudie certaines propriétés d'une classe de processus aléatoires réels à temps continu, les march...
On étudie certaines propriétés d'une classe de processus aléatoires réels à temps continu, les march...
In this article, we investigate the local behavior of the occupation measure µ of a class of real-va...
In this dissertation, we study various dimension properties of the regularity of jump di usion proce...
In this dissertation, we study various dimension properties of the regularity of jump di usion proce...
Dans cette thèse, on étudie diverses propriétés dimensionnelles de la régularité de processus de dif...
AbstractLet X=(Xt)t⩾0 be a Lévy process and μ a positive Borel measure on R+. Suppose that the integ...
Accepted for publication in IEEE Trans. on NetworkingInternational audienceWe consider a family of s...
Multifractal analysis is the mathematical study of the irregularity of objects or irregular function...
Multifractal analysis is the mathematical study of the irregularity of objects or irregular function...
We consider a class of Levy-type processes with unbounded coefficients, arising as Doob h-transforms...
We introduce a class of random fields with variable mean-square regularity order defined on multifra...
In this article, we investigate the local behaviors of the occupation measure µ of a class of real-v...
This thesis mainly studies the 3D homogeneous Boltzmann equation for hard potentials and moderately ...
This thesis mainly studies the 3D homogeneous Boltzmann equation for hard potentials and moderately ...
On étudie certaines propriétés d'une classe de processus aléatoires réels à temps continu, les march...
On étudie certaines propriétés d'une classe de processus aléatoires réels à temps continu, les march...
In this article, we investigate the local behavior of the occupation measure µ of a class of real-va...
In this dissertation, we study various dimension properties of the regularity of jump di usion proce...
In this dissertation, we study various dimension properties of the regularity of jump di usion proce...
Dans cette thèse, on étudie diverses propriétés dimensionnelles de la régularité de processus de dif...
AbstractLet X=(Xt)t⩾0 be a Lévy process and μ a positive Borel measure on R+. Suppose that the integ...
Accepted for publication in IEEE Trans. on NetworkingInternational audienceWe consider a family of s...
Multifractal analysis is the mathematical study of the irregularity of objects or irregular function...
Multifractal analysis is the mathematical study of the irregularity of objects or irregular function...
We consider a class of Levy-type processes with unbounded coefficients, arising as Doob h-transforms...
We introduce a class of random fields with variable mean-square regularity order defined on multifra...
In this article, we investigate the local behaviors of the occupation measure µ of a class of real-v...
This thesis mainly studies the 3D homogeneous Boltzmann equation for hard potentials and moderately ...
This thesis mainly studies the 3D homogeneous Boltzmann equation for hard potentials and moderately ...
On étudie certaines propriétés d'une classe de processus aléatoires réels à temps continu, les march...
On étudie certaines propriétés d'une classe de processus aléatoires réels à temps continu, les march...