In view of the growing success of second-order statistics in classification problems, the work of this thesis has been oriented towards the development of learning methods in manifolds. Indeed, covariance matrices are symmetric positive definite matrices that live in a non-Euclidean space. It is therefore necessary to adapt the classical tools of Euclidean geometry to handle this type of data. To do that, we have proposed to exploit the log-Euclidean metric. This latter allows to project the set of covariance matrices on a tangent plane to the manifold defined at a reference point, classically chosen equal to the identity matrix, followed by a vectorization step to obtain the log-Euclidean representation. On this tangent plane, it is possib...
Year after year advances in deep learning allow to solve a rapidly increasing range of challenging t...
Today's computerized processes generatemassive amounts of streaming data.In many applications, data ...
RÉSUMÉ: La géostatistique s'intéresse à la modélisation des phénomènes naturels par des champs aléat...
Devant le succès grandissant des statistiques du second ordre dans les problèmes de classification, ...
Devant le succès grandissant des statistiques du second ordre dans les problèmes de classification, ...
Dans de nombreuses applications, les données sont des matrices de covariance ou de corrélation entre...
In many applications, the data can be represented by covariance matrices or correlation matrices bet...
Multivariate time series are the standard tool for describing and analysing measurements from multip...
Multivariate time series are the standard tool for describing and analysing measurements from multip...
The spatio-temporal representation of background error covariances is one of the major problems in d...
National audienceThis paper introduces a new hybrid architecture based on Fisher vector encoding (VF...
Data assimilation aims at providing an initial state as accurate as possible for numerical weather p...
The field of affective computing, which has been growing rapidly over the last few decades, aims to ...
This thesis in computer science and mathematics is applied to the field ofneuroscience, and more par...
L’utilisation de séries temporelles multi-variées est une procédure standard pour décrire et analyse...
Year after year advances in deep learning allow to solve a rapidly increasing range of challenging t...
Today's computerized processes generatemassive amounts of streaming data.In many applications, data ...
RÉSUMÉ: La géostatistique s'intéresse à la modélisation des phénomènes naturels par des champs aléat...
Devant le succès grandissant des statistiques du second ordre dans les problèmes de classification, ...
Devant le succès grandissant des statistiques du second ordre dans les problèmes de classification, ...
Dans de nombreuses applications, les données sont des matrices de covariance ou de corrélation entre...
In many applications, the data can be represented by covariance matrices or correlation matrices bet...
Multivariate time series are the standard tool for describing and analysing measurements from multip...
Multivariate time series are the standard tool for describing and analysing measurements from multip...
The spatio-temporal representation of background error covariances is one of the major problems in d...
National audienceThis paper introduces a new hybrid architecture based on Fisher vector encoding (VF...
Data assimilation aims at providing an initial state as accurate as possible for numerical weather p...
The field of affective computing, which has been growing rapidly over the last few decades, aims to ...
This thesis in computer science and mathematics is applied to the field ofneuroscience, and more par...
L’utilisation de séries temporelles multi-variées est une procédure standard pour décrire et analyse...
Year after year advances in deep learning allow to solve a rapidly increasing range of challenging t...
Today's computerized processes generatemassive amounts of streaming data.In many applications, data ...
RÉSUMÉ: La géostatistique s'intéresse à la modélisation des phénomènes naturels par des champs aléat...