Accepted for publication in Mathematische NachrichtenInternational audienceLet $1\leq p<\infty$ and let $T\colon L^p({\mathcal M})\to L^p({\mathcal N})$ be a bounded map between noncommutative $L^p$-spaces. If $T$ is bijective and separating (i.e., for any $x,y\in L^p({\mathcal M})$ such that $x^*y=xy^*=0$, we have $T(x)^*T(y)=T(x)T(y)^*=0$), we prove the existence of decompositions ${\mathcal M}={\mathcal M}_1\mathop{\oplus}\limits^\infty{\mathcal M}_2$, ${\mathcal N}={\mathcal N}_1 \mathop{\oplus}\limits^\infty{\mathcal N}_2$ and maps $T_1\colon L^p({\mathcal M}_1)\to L^p({\mathcal N}_1)$, $T_2\colon L^p({\mathcal M}_2)\to L^p({\mathcal N}_2)$, such that $T=T_1+T_2$, $T_1$ has a direct Yeadon type factorisation and $T_2$ has an anti-direc...
For any Ritt operator $T$ acting on a noncommutative $L^p$-space, we define the notion of completely...
Let X, Y be compact Hausdorff spaces and E,F be Banach spaces. A linear map T V C.X; E / ! C.Y; F/ i...
For any Ritt operator $T$ acting on a noncommutative $L^p$-space, we define the notion of completely...
Accepted for publication in Mathematische NachrichtenInternational audienceLet $1\leq p<\infty$ and ...
Accepted for publication in Mathematische NachrichtenInternational audienceLet $1\leq p<\infty$ and ...
Accepted for publication in Mathematische NachrichtenInternational audienceLet $1\leq p<\infty$ and ...
Accepted for publication in Mathematische NachrichtenInternational audienceLet $1\leq p<\infty$ and ...
Accepted for publication in Mathematische NachrichtenInternational audienceLet $1\leq p<\infty$ and ...
Accepted for publication in Mathematische NachrichtenInternational audienceLet $1\leq p<\infty$ and ...
Accepted for publication in Indiana University Mathematics JournalInternational audienceFor any semi...
Accepted for publication in Indiana University Mathematics JournalInternational audienceFor any semi...
Accepted for publication in Indiana University Mathematics JournalInternational audienceFor any semi...
Accepted for publication in Indiana University Mathematics JournalInternational audienceFor any semi...
Let $1\leq p<\infty$ and let $T\colon L^p({\mathcal M})\to L^p({\mathcal N})$ be a bounded map betwe...
Abstract. Let X, Y be compact Hausdorff spaces and E, F be Banach spaces. A linear map T: C(X,E) → C...
For any Ritt operator $T$ acting on a noncommutative $L^p$-space, we define the notion of completely...
Let X, Y be compact Hausdorff spaces and E,F be Banach spaces. A linear map T V C.X; E / ! C.Y; F/ i...
For any Ritt operator $T$ acting on a noncommutative $L^p$-space, we define the notion of completely...
Accepted for publication in Mathematische NachrichtenInternational audienceLet $1\leq p<\infty$ and ...
Accepted for publication in Mathematische NachrichtenInternational audienceLet $1\leq p<\infty$ and ...
Accepted for publication in Mathematische NachrichtenInternational audienceLet $1\leq p<\infty$ and ...
Accepted for publication in Mathematische NachrichtenInternational audienceLet $1\leq p<\infty$ and ...
Accepted for publication in Mathematische NachrichtenInternational audienceLet $1\leq p<\infty$ and ...
Accepted for publication in Mathematische NachrichtenInternational audienceLet $1\leq p<\infty$ and ...
Accepted for publication in Indiana University Mathematics JournalInternational audienceFor any semi...
Accepted for publication in Indiana University Mathematics JournalInternational audienceFor any semi...
Accepted for publication in Indiana University Mathematics JournalInternational audienceFor any semi...
Accepted for publication in Indiana University Mathematics JournalInternational audienceFor any semi...
Let $1\leq p<\infty$ and let $T\colon L^p({\mathcal M})\to L^p({\mathcal N})$ be a bounded map betwe...
Abstract. Let X, Y be compact Hausdorff spaces and E, F be Banach spaces. A linear map T: C(X,E) → C...
For any Ritt operator $T$ acting on a noncommutative $L^p$-space, we define the notion of completely...
Let X, Y be compact Hausdorff spaces and E,F be Banach spaces. A linear map T V C.X; E / ! C.Y; F/ i...
For any Ritt operator $T$ acting on a noncommutative $L^p$-space, we define the notion of completely...