Recent applications in low-power (1-20 mW) near-sensor computing require the adoption of floating-point arithmetic to reconcile high precision results with a wide dynamic range. In this article, we propose a low-power multi-core computing cluster that leverages the fined-grained tunable principles of transprecision computing to provide support to near-sensor applications at a minimum power budget. Our solution - based on the open-source RISC-V architecture - combines parallelization and sub-word vectorization with a dedicated interconnect design capable of sharing floating-point units (FPUs) among the cores. On top of this architecture, we provide a full-fledged software stack support, including a parallel low-level runtime, a compilation t...