The data cube is a critical tool for accelerating online analysis in big data. Due to its exponential space overhead, the quotient cube, as the main data cube compression approach, was proposed to significantly reduce the number of data cells if they are aggregated over the same base tuple set, i.e. they are cover equivalent to form an equivalence class. Nevertheless, it still poses challenges to efficiently analyze massive data due to high storage space consumption. This paper proposes the reduced quotient cube (RQC) based on the following observation. (i) there are equivalence classes of various sizes in a quotient cube; (ii) the small equivalence classes usually dominate; (iii) the big equivalence classes are more capable of query answer...