Mechanical metamaterials such as open- and closed-cell lattice structures, foams, composites, and so forth can often be parametrized in terms of their microstructural properties, for example, relative densities, aspect ratios, material, shape, or topological parameters. To model the effective constitutive behavior and facilitate efficient multiscale simulation, design, and optimization of such parametric metamaterials in the finite deformation regime, a machine learning-based constitutive model is presented in this work. The approach is demonstrated in application to elastic beam lattices with cubic anisotropy, which exhibit highly nonlinear effective behaviors due to microstructural instabilities and topology variations. Based on microstru...