It is well understood that dynamic instability is among the primary drivers of forecast uncertainty in chaotic, physical systems. Data assimilation techniques have been designed to exploit this phenomenon, reducing the effective dimension of the data assimilation problem to the directions of rapidly growing errors. Recent mathematical work has, moreover, provided formal proofs of the central hypothesis of the assimilation in the unstable subspace methodology of Anna Trevisan and her collaborators: for filters and smoothers in perfect, linear, Gaussian models, the distribution of forecast errors asymptotically conforms to the unstable-neutral subspace. Specifically, the column span of the forecast and posterior error covariances asymptotical...