Dans cette thèse, nous démontrons que la cohomologie tropicale d'une variété tropicale projective lisse vérifie plusieurs propriétés de symétries appelées propriétés kählériennes. Ces propriétés sont la dualité de Poincaré, le théorème de Lefschetz difficile, les relations de Hodge-Riemann et la conjecture monodromie-poids. Nous proposons de plus quelques applications.Dans le cas local, nous construisons une vaste famille d'éventails, dits tropicalement épluchables, dont les compactifications canoniques vérifient les propriétés kählériennes. Nous montrons aussi que la cohomologie tropicale calcule leurs anneaux de Chow et certains quotients des anneaux de Stanley-Reisner particulièrement importants en combinatoire.Pour le cas global, la pre...
We introduce a scheme-theoretic enrichment of the principal objects of tropical geometry. Using a ca...
We establish variants of the Lefschetz section theorem for the integral tropical homology groups of ...
We study compactifications of subvarieties of algebraic tori using methods from the still developing...
In this thesis, we prove that the tropical cohomology of a smooth projective tropical variety verifi...
Given the tropicalization of a complex subvariety of the torus, we define a morphism between the tro...
The cohomology of moduli spaces of curves has been extensively studied in classical algebraic geomet...
Tropical geometry is an area of mathematics between algebraic geometry, polyhedral geometry and comb...
Tropical geometry is a relatively new field of mathematics that studies the tropicalization map: a m...
In this thesis, I extend tropicalization of subvarieties of algebraic tori over a trivially valued a...
Dans cette thèse, on s'intéresse aux questions d'approximabilité des courbes complexes tropicales pa...
Tout p-cycle tropical VT de Rn, on attache naturellement un courant fermé (p, p) dimensionnel d'ordr...
Tropical geometry is a developing area of mathematics in between algebraic geometry, combinatorics a...
In recent years, tropical geometry has developed as a theory on its own. Its two main aims are to an...
Tropical geometry is used to develop a new approach to the theory of discriminants and resultants in...
In recent decades, tropical mathematics gradually evolved as a field of study in mathematics and it ...
We introduce a scheme-theoretic enrichment of the principal objects of tropical geometry. Using a ca...
We establish variants of the Lefschetz section theorem for the integral tropical homology groups of ...
We study compactifications of subvarieties of algebraic tori using methods from the still developing...
In this thesis, we prove that the tropical cohomology of a smooth projective tropical variety verifi...
Given the tropicalization of a complex subvariety of the torus, we define a morphism between the tro...
The cohomology of moduli spaces of curves has been extensively studied in classical algebraic geomet...
Tropical geometry is an area of mathematics between algebraic geometry, polyhedral geometry and comb...
Tropical geometry is a relatively new field of mathematics that studies the tropicalization map: a m...
In this thesis, I extend tropicalization of subvarieties of algebraic tori over a trivially valued a...
Dans cette thèse, on s'intéresse aux questions d'approximabilité des courbes complexes tropicales pa...
Tout p-cycle tropical VT de Rn, on attache naturellement un courant fermé (p, p) dimensionnel d'ordr...
Tropical geometry is a developing area of mathematics in between algebraic geometry, combinatorics a...
In recent years, tropical geometry has developed as a theory on its own. Its two main aims are to an...
Tropical geometry is used to develop a new approach to the theory of discriminants and resultants in...
In recent decades, tropical mathematics gradually evolved as a field of study in mathematics and it ...
We introduce a scheme-theoretic enrichment of the principal objects of tropical geometry. Using a ca...
We establish variants of the Lefschetz section theorem for the integral tropical homology groups of ...
We study compactifications of subvarieties of algebraic tori using methods from the still developing...