Given two samples from two populations, one could ask how similar the populations are, that is, how close their probability distributions are. For absolutely continuous distributions, one way to measure the proximity of such populations is to use a measure of distance (metric) between the probability density functions (which are unknown given that only samples are observed). In this work, we work with the integrated squared distance as metric. To measure the uncertainty of the squared integrated distance, we first model the uncertainty of each of the probability density functions using a nonparametric Bayesian method. The method consists of estimating the probability density function f (or its logarithm) using Fourier series {f0;f1; :::;fI}...