Materials with nanostructured conducting domains are essential for a wide range of applications related to alternative energy. Active materials in battery and fuel cell electrodes such as LiFePO4, graphite, and platinum, are either electronic or ionic insulators. Nanoscale electron- and ion-conducting domains are necessary for enabling redox reactions in these materials. For example, a traditional porous lithium battery electrode consists of a redox-active material, carbon black for electronic conduction, and non-conductive binder that holds the particles in place. The pores are backfilled filled with organic electrolyte for ionic conduction. In some cases such as LiFePO4, electronic and ionic conductivities are so low that the active ...