This dissertation is composed of a study of estimation methods in classical and test theories and the elaboration and application of a cluster-robust variance estimator. Variance estimators derived from generalized estimating equations are known to be robust to most covariance structures and are therefore well suited for psychometric analysis of longitudinal test data. However, the approximate normal distribution of the test statistic for clustered binary experiments breaks down when the variation between cluster variances is large. The degrees of freedom for the test statistic are smaller than the number of clusters in unbalanced experiments and closer to an effective number of clusters, G*, which we estimate as the degrees of freedom usin...