This article discusses an instrumental variable approach for analyzing censored data that includes many instruments that are weakly associated with the endogenous variable. We study the effect of imprisonment on time to employment using an administrative data on all individuals sentenced for felony in Michigan in the years 2003–2006. Despite the large body of research on the effect of prison on employment, this is still a controversial topic, especially since some of the studies could have been affected by unmeasured confounding. We take advantage of a natural experiment based on the random assignment of judges to felony cases and construct a vector of instruments based on judges’ ID that can avoid the confounding bias. However, some of the...