Cette thèse traite de deux aspects différents (produits semi-directs polynomiaux et endomorphismes post- critiquement ni) de la dynamique holomorphe sur le plan projectif P2. Elle contient les trois articles suivants : I. Non-wandering Fatou components for strongly attracting polynomial skew products. (Publié dans The Journal of Geometric Analysis.) Nous prouvons une généralisation du théorème de non-errance de Sullivan pour les produits semi-directs polynomiaux de C2. Plus précisément, nous montrons que si f est un produit semi-direct polynomial avec une droite verticale invariante L attractive, et que de plus le multiplicateur correspondant est suffisamment petit, alors il n'y a pas de composante Fatou errante dans le bassin d'attraction ...
International audienceIn this paper we show that if p is a polynomial of degree d >= 2 possessing a ...
International audienceIn this paper we show that if p is a polynomial of degree d >= 2 possessing a ...
International audienceIn this short note we give an updated account of the recent results on Fatou c...
This thesis deals with two different aspects (polynomial skew products and postctitically finite end...
International audienceWe show that there exist polynomial endomorphisms of ℂ^2, possessing a wanderi...
International audienceWe show that there exist polynomial endomorphisms of ℂ^2, possessing a wanderi...
International audienceWe show that there exist polynomial endomorphisms of ℂ^2, possessing a wanderi...
We investigate the existence of wandering Fatou components for polynomial skew-products in two compl...
Abstract. We show that there exist polynomial endomorphisms of C2, pos-sessing a wandering Fatou com...
13 pages, no figuresInternational audienceWe investigate the description of Fatou components for pol...
13 pages, no figuresInternational audienceWe investigate the description of Fatou components for pol...
13 pages, no figuresInternational audienceWe investigate the description of Fatou components for pol...
A fundamental result in one variable holomorphic dynamics is Sullivan's theorem on the non-existence...
Until recently, little was known about the existence of wandering Fatou components for rational maps...
Cette thèse est consacrée aux systèmes dynamiques holomorphes en dimension complexe 2, et à la théor...
International audienceIn this paper we show that if p is a polynomial of degree d >= 2 possessing a ...
International audienceIn this paper we show that if p is a polynomial of degree d >= 2 possessing a ...
International audienceIn this short note we give an updated account of the recent results on Fatou c...
This thesis deals with two different aspects (polynomial skew products and postctitically finite end...
International audienceWe show that there exist polynomial endomorphisms of ℂ^2, possessing a wanderi...
International audienceWe show that there exist polynomial endomorphisms of ℂ^2, possessing a wanderi...
International audienceWe show that there exist polynomial endomorphisms of ℂ^2, possessing a wanderi...
We investigate the existence of wandering Fatou components for polynomial skew-products in two compl...
Abstract. We show that there exist polynomial endomorphisms of C2, pos-sessing a wandering Fatou com...
13 pages, no figuresInternational audienceWe investigate the description of Fatou components for pol...
13 pages, no figuresInternational audienceWe investigate the description of Fatou components for pol...
13 pages, no figuresInternational audienceWe investigate the description of Fatou components for pol...
A fundamental result in one variable holomorphic dynamics is Sullivan's theorem on the non-existence...
Until recently, little was known about the existence of wandering Fatou components for rational maps...
Cette thèse est consacrée aux systèmes dynamiques holomorphes en dimension complexe 2, et à la théor...
International audienceIn this paper we show that if p is a polynomial of degree d >= 2 possessing a ...
International audienceIn this paper we show that if p is a polynomial of degree d >= 2 possessing a ...
International audienceIn this short note we give an updated account of the recent results on Fatou c...