In this paper we introduce the plurality kth social choice function selecting an alternative, which is ranked kth in the social ranking following the number of top positions of alternatives in the individual ranking of voters. As special case the plurality 1st is the same as the well-known plurality rule. Concerning individual manipulability, we show that the larger k the more preference profiles are individually manipulable. We also provide maximal non-manipulable domains for the plurality kth rules. These results imply analogous statements on the single non-transferable vote rule. We propose a decomposition of social choice functions based on plurality kth rules, which we apply for determining non-manipulable subdomains for arbitra...