A word x that is absent from a word y is called minimal if all its proper factors occur in y. Given a collection of k words y1, … , yk over an alphabet Σ, we are asked to compute the set M{y1,…,yk}ℓ of minimal absent words of length at most ℓ of the collection {y1, … , yk}. The set M{y1,…,yk}ℓ contains all the words x such that x is absent from all the words of the collection while there exist i,j, such that the maximal proper suffix of x is a factor of yi and the maximal proper prefix of x is a factor of yj. In data compression, this corresponds to computing the antidictionary of k documents. In bioinformatics, it corresponds to computing words that are absent from a genome of k chromosomes. Indeed, the set Myℓ of minimal absent words of a...