We report a simple method to generate potential/surface density pairs in flat axially symmetric finite size disks. Potential/surface density pairs consist of a ``homogeneous'' pair (a closed form expression) corresponding to a uniform disk, and a ``residual'' pair. This residual component is converted into an infinite series of integrals over the radial extent of the disk. For a certain class of surface density distributions (like power laws of the radius), this series is fully analytical. The extraction of the homogeneous pair is equivalent to a convergence acceleration technique, in a matematical sense. In the case of power law distributions, the convergence rate of the residual series is shown to be cubic inside the source. As a conseque...