We introduce a method to estimate continuum percolation thresholds and illustrate its usefulness by investigating geometric percolation of noninteracting line segments and disks in two spatial dimensions. These examples serve as models for electrical percolation of elongated and flat nanofillers in thin film composites. While the standard contact volume argument and extensions thereof in connectedness percolation theory yield accurate predictions for slender nanofillers in three dimensions, they fail to do so in two dimensions, making our test a stringent one. In fact, neither a systematic order-by-order correction to the standard argument nor invoking the connectedness version of the Percus-Yevick approximation yield significant improvemen...