Electrochemical reactions are inherently heterogeneous, occurring at the interface between a solid electrode and an electrolyte solution. Therefore, detailed mechanistic understanding requires the electrode/solution interface (ESI) to be interrogated. Doing so with spectroelectrochemical techniques generally encounters several analytical challenges. Sampling the ESI requires a surface-sensitive spectroscopy capable of addressing a buried interface, placing strong limitations on photon energy and spectroelectrochemical cell design. Furthermore, dynamic measurements are fundamentally limited by the finite rise time of the electrode. For many important processes with characteristic timescales in the milli- to microsecond regime, achieving a su...