We continue investigating the generalisations of geometrical statistical models introduced in [13], in the form of models of webs on the hexagonal lattice H having a U_q(sl_n) quantum group symmetry. We focus here on the n=3 case of cubic webs, based on the Kuperberg A_2 spider, and illustrate its properties by comparisons with the well-known dilute loop model (the n=2 case) throughout. A local vertex-model reformulation is exhibited, analogous to the correspondence between the loop model and a three-state vertex model. The n=3 representation uses seven states per link of H, displays explicitly the geometrical content of the webs and their U_q(sl_3) symmetry, and permits us to study the model on a cylinder via a local transfer matrix. A num...